Evaluation and Demonstration Boards and Kits

Image Part Number Description / PDF Quantity Rfq
CDKWM8956-S-1

CDKWM8956-S-1

Cirrus Logic

KIT - WM8956 KIT CDB6158 MB DC

0

CDBWM8850-1

CDBWM8850-1

Cirrus Logic

WM8850-6200-FL48-EV1

0

CDKWM8753-S-1

CDKWM8753-S-1

Cirrus Logic

KIT - WM8753 KIT CDB6117 MB DC

0

CDB4955A

CDB4955A

Cirrus Logic

EVALUATION BOARD FOR CS4955A

0

CDKWM8725-S-1

CDKWM8725-S-1

Cirrus Logic

KIT - WM8725 KIT CDB6059 MB DC

0

CDKWM8310-S-1

CDKWM8310-S-1

Cirrus Logic

KIT - WM8310 KIT CDB6204 MB DC

0

CDBWM8956-M-1

CDBWM8956-M-1

Cirrus Logic

EVAL BD - WM8956 MINI EVAL BOARD

0

CDKWM8903-S-1

CDKWM8903-S-1

Cirrus Logic

KIT - WM8903 KIT CDB6201 MB DC

0

CDKWM8281-S-3

CDKWM8281-S-3

Cirrus Logic

KIT-WM8281 KIT (FLORIDA) LOCHNAG

0

CDBWM0011-M-1

CDBWM0011-M-1

Cirrus Logic

EVAL BD - CAOL ILA MINI EVAL BOA

0

CDK2000-LCO/KIT3

CDK2000-LCO/KIT3

Cirrus Logic

KIT EVAL PROTOTYPING CS2300-CP

0

CDB1500

CDB1500

Cirrus Logic

DEVELOPMENT BOARD FOR CS1500

0

CDKWM8962-S-1

CDKWM8962-S-1

Cirrus Logic

KIT - WM8962 KIT CDB6243 MB DC

0

CDBWM8750L-M-1

CDBWM8750L-M-1

Cirrus Logic

EVAL BD - WM8750L MINI EVAL BOAR

0

CDBWM8594-2

CDBWM8594-2

Cirrus Logic

EVAL BD - WM8594-6177-FT48-EV2 E

0

CDB8130

CDB8130

Cirrus Logic

BOARD EVAL FOR CS8130

0

CDBWM8253-M-1

CDBWM8253-M-1

Cirrus Logic

EVAL BD - WM8253 MINI EVAL BOARD

0

DCGB43130-4399

DCGB43130-4399

Cirrus Logic

BD- KNUCKLES1 /43130 & 4399 DC

0

CDBWM8533-M-1

CDBWM8533-M-1

Cirrus Logic

EVAL BD - WM8533 MINI EVAL BOARD

0

CDKWM8325-S-1

CDKWM8325-S-1

Cirrus Logic

KIT - WM8325 KIT CDB6246 MB DC

0

Evaluation and Demonstration Boards and Kits

Evaluation and Demonstration Boards and Kits are hardware platforms designed to facilitate the development, testing, and demonstration of electronic systems. They serve as critical tools for engineers and developers to prototype applications, validate designs, and accelerate time-to-market. These boards integrate processors, sensors, communication interfaces, and software ecosystems, enabling rapid experimentation across diverse industries such as IoT, automotive, and industrial automation.

TypeFunctional FeaturesApplication Examples
Microcontroller Development BoardsEmbedded CPUs, GPIOs, integrated peripheralsIoT devices, robotics
FPGA Evaluation BoardsReconfigurable logic, high-speed interfacesCommunication systems, AI accelerators
Sensor Expansion KitsMulti-sensor integration (temperature, motion, etc.)Smart agriculture, environmental monitoring
Wireless Communication ModulesBluetooth/Wi-Fi/LoRa protocols, antenna interfacesConnected healthcare, smart cities

Typical architecture includes: - Processing Units: Microcontrollers, FPGAs, or SoCs - Memory: RAM, Flash, EEPROM - Interfaces: USB, UART, SPI, I2C, Ethernet - Power Management: Regulators, battery connectors - Software Stack: SDKs, device drivers, IDEs Physical designs often feature standardized form factors (e.g., Arduino Uno, Raspberry Pi HATs) for modular expansion.

ParameterDescription
Processor Performance (MHz/GHz)Determines computational capability
Memory Capacity (RAM/Flash)Affects program complexity and data storage
Interface TypesDictates peripheral compatibility
Power Consumption (mW/MHz)Critical for battery-operated devices
Operating Temperature (-40 C to +85 C)Defines environmental durability

- Internet of Things (IoT): Smart home controllers, edge AI nodes - Automotive: ADAS sensor fusion platforms - Industrial Automation: PLC controllers, predictive maintenance systems - Consumer Electronics: Wearables, AR/VR prototypes

ManufacturerRepresentative Products
STMicroelectronicsSTM32 Nucleo Series, SensorTile Kit
IntelIntel Edison, Movidius Neural Compute Stick
XilinxZynq UltraScale+ MPSoC Evaluation Kit
ArduinoArduino MKR Series, Nano 33 IoT

Key considerations: 1. Match processor capabilities to application complexity 2. Verify interface compatibility with target peripherals 3. Assess software ecosystem maturity (e.g., ROS support) 4. Evaluate power budget requirements 5. Consider long-term availability and community support

- Growing adoption of RISC-V-based evaluation platforms - Integration of AI/ML accelerators in edge computing boards - Expansion of open-source hardware ecosystems - Increased focus on energy-efficient architectures for IoT - Standardization of form factors (e.g., SparkFun's Qwiic system)

RFQ BOM Call Skype Email
Top