Evaluation and Demonstration Boards and Kits

Image Part Number Description / PDF Quantity Rfq
CDKWM8904-S-1

CDKWM8904-S-1

Cirrus Logic

KIT - WM8904 KIT CDB6201 8904DC

0

CDBWM8985-M-1

CDBWM8985-M-1

Cirrus Logic

EVAL BD - WM8985 MINI EVAL BOARD

0

CDKWM8750BL-S-1

CDKWM8750BL-S-1

Cirrus Logic

KIT - WM8750BL KIT CDB6097 MB DC

0

DC495314

DC495314

Cirrus Logic

EVAL BD DAUGHTER CARD ATHENA4

0

CDBWM8782-1

CDBWM8782-1

Cirrus Logic

WM8782-6125-SSOP20-EV1

0

CPB181022-CM2Z-MT

CPB181022-CM2Z-MT

Cirrus Logic

MODULE COBRANET 1810 CM2 MT

0

CDB6097-1

CDB6097-1

Cirrus Logic

EVAL BD - BASE BRD WM8988/8750/8

0

CRD49834

CRD49834

Cirrus Logic

EVAL BD - DSP REF DESIGN DAGDA 3

0

CDBWM8988-M-1

CDBWM8988-M-1

Cirrus Logic

EVAL BD - WM8988 MINI EVAL BOARD

0

CDKWM9712-S-1

CDKWM9712-S-1

Cirrus Logic

KIT - WM9712 KIT CDB6123 MB DC

0

DC49531

DC49531

Cirrus Logic

EVAL BD - DAUGHTER CARD FOR ATHE

0

CDBWM8351-M-1

CDBWM8351-M-1

Cirrus Logic

EVAL BD - WM8351 MINI EVAL BOARD

0

CDKWM8983-S-1

CDKWM8983-S-1

Cirrus Logic

KIT - WM8983 KIT CDB6160 MB DC

0

CDBWM9712-M-1

CDBWM9712-M-1

Cirrus Logic

EVAL BD - WM9712 MINI EVAL BOARD

0

CPB496122-CM2Z-MT

CPB496122-CM2Z-MT

Cirrus Logic

MODULE COBRANET 4961 CM2 MT

0

CDB43131K

CDB43131K

Cirrus Logic

BD-HIPFDACINTGHPDRVR&IMP DTC

0

CDB5464U-Z

CDB5464U-Z

Cirrus Logic

BOARD EVAL FOR CS5464 ADC

0

CDBWM8255B-M-1

CDBWM8255B-M-1

Cirrus Logic

EVAL BD - WM8255 MINI EVAL BOARD

0

DC49834

DC49834

Cirrus Logic

EVAL BD DSP DAUGHT CARD DAGDA3

0

CPB181022-CM2Z-FB

CPB181022-CM2Z-FB

Cirrus Logic

MODULE COBRANET 1810 CM2 FB

0

Evaluation and Demonstration Boards and Kits

Evaluation and Demonstration Boards and Kits are hardware platforms designed to facilitate the development, testing, and demonstration of electronic systems. They serve as critical tools for engineers and developers to prototype applications, validate designs, and accelerate time-to-market. These boards integrate processors, sensors, communication interfaces, and software ecosystems, enabling rapid experimentation across diverse industries such as IoT, automotive, and industrial automation.

TypeFunctional FeaturesApplication Examples
Microcontroller Development BoardsEmbedded CPUs, GPIOs, integrated peripheralsIoT devices, robotics
FPGA Evaluation BoardsReconfigurable logic, high-speed interfacesCommunication systems, AI accelerators
Sensor Expansion KitsMulti-sensor integration (temperature, motion, etc.)Smart agriculture, environmental monitoring
Wireless Communication ModulesBluetooth/Wi-Fi/LoRa protocols, antenna interfacesConnected healthcare, smart cities

Typical architecture includes: - Processing Units: Microcontrollers, FPGAs, or SoCs - Memory: RAM, Flash, EEPROM - Interfaces: USB, UART, SPI, I2C, Ethernet - Power Management: Regulators, battery connectors - Software Stack: SDKs, device drivers, IDEs Physical designs often feature standardized form factors (e.g., Arduino Uno, Raspberry Pi HATs) for modular expansion.

ParameterDescription
Processor Performance (MHz/GHz)Determines computational capability
Memory Capacity (RAM/Flash)Affects program complexity and data storage
Interface TypesDictates peripheral compatibility
Power Consumption (mW/MHz)Critical for battery-operated devices
Operating Temperature (-40 C to +85 C)Defines environmental durability

- Internet of Things (IoT): Smart home controllers, edge AI nodes - Automotive: ADAS sensor fusion platforms - Industrial Automation: PLC controllers, predictive maintenance systems - Consumer Electronics: Wearables, AR/VR prototypes

ManufacturerRepresentative Products
STMicroelectronicsSTM32 Nucleo Series, SensorTile Kit
IntelIntel Edison, Movidius Neural Compute Stick
XilinxZynq UltraScale+ MPSoC Evaluation Kit
ArduinoArduino MKR Series, Nano 33 IoT

Key considerations: 1. Match processor capabilities to application complexity 2. Verify interface compatibility with target peripherals 3. Assess software ecosystem maturity (e.g., ROS support) 4. Evaluate power budget requirements 5. Consider long-term availability and community support

- Growing adoption of RISC-V-based evaluation platforms - Integration of AI/ML accelerators in edge computing boards - Expansion of open-source hardware ecosystems - Increased focus on energy-efficient architectures for IoT - Standardization of form factors (e.g., SparkFun's Qwiic system)

RFQ BOM Call Skype Email
Top